Mirror of roytam1's UXP fork just in case Moonchild and Tobin decide to go after him
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2331 lines
84 KiB

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* This file respects the LLVM coding standard described at
* http://llvm.org/docs/CodingStandards.html */
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/ASTMatchers/ASTMatchers.h"
#include "clang/Basic/Version.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/FrontendPluginRegistry.h"
#include "clang/Frontend/MultiplexConsumer.h"
#include "clang/Sema/Sema.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include <memory>
#include <iterator>
#define CLANG_VERSION_FULL (CLANG_VERSION_MAJOR * 100 + CLANG_VERSION_MINOR)
using namespace llvm;
using namespace clang;
#if CLANG_VERSION_FULL >= 306
typedef std::unique_ptr<ASTConsumer> ASTConsumerPtr;
#else
typedef ASTConsumer *ASTConsumerPtr;
#endif
#ifndef HAVE_NEW_ASTMATCHER_NAMES
// In clang 3.8, a number of AST matchers were renamed to better match the
// respective AST node. We use the new names, and #define them to the old
// ones for compatibility with older versions.
#define cxxConstructExpr constructExpr
#define cxxConstructorDecl constructorDecl
#define cxxMethodDecl methodDecl
#define cxxNewExpr newExpr
#define cxxRecordDecl recordDecl
#endif
#ifndef HAS_ACCEPTS_IGNORINGPARENIMPCASTS
#define hasIgnoringParenImpCasts(x) has(x)
#else
// Before clang 3.9 "has" would behave like has(ignoringParenImpCasts(x)),
// however doing that explicitly would not compile.
#define hasIgnoringParenImpCasts(x) has(ignoringParenImpCasts(x))
#endif
// Check if the given expression contains an assignment expression.
// This can either take the form of a Binary Operator or a
// Overloaded Operator Call.
bool hasSideEffectAssignment(const Expr *Expression) {
if (auto OpCallExpr = dyn_cast_or_null<CXXOperatorCallExpr>(Expression)) {
auto BinOp = OpCallExpr->getOperator();
if (BinOp == OO_Equal || (BinOp >= OO_PlusEqual && BinOp <= OO_PipeEqual)) {
return true;
}
} else if (auto BinOpExpr = dyn_cast_or_null<BinaryOperator>(Expression)) {
if (BinOpExpr->isAssignmentOp()) {
return true;
}
}
// Recurse to children.
for (const Stmt *SubStmt : Expression->children()) {
auto ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
if (ChildExpr && hasSideEffectAssignment(ChildExpr)) {
return true;
}
}
return false;
}
namespace {
using namespace clang::ast_matchers;
class DiagnosticsMatcher {
public:
DiagnosticsMatcher();
ASTConsumerPtr makeASTConsumer() { return AstMatcher.newASTConsumer(); }
private:
class ScopeChecker : public MatchFinder::MatchCallback {
public:
virtual void run(const MatchFinder::MatchResult &Result);
};
class ArithmeticArgChecker : public MatchFinder::MatchCallback {
public:
virtual void run(const MatchFinder::MatchResult &Result);
};
class TrivialCtorDtorChecker : public MatchFinder::MatchCallback {
public:
virtual void run(const MatchFinder::MatchResult &Result);
};
class NaNExprChecker : public MatchFinder::MatchCallback {
public:
virtual void run(const MatchFinder::MatchResult &Result);
};
class NoAddRefReleaseOnReturnChecker : public MatchFinder::MatchCallback {
public:
virtual void run(const MatchFinder::MatchResult &Result);
};
class RefCountedInsideLambdaChecker : public MatchFinder::MatchCallback {
public:
virtual void run(const MatchFinder::MatchResult &Result);
void emitDiagnostics(SourceLocation Loc, StringRef Name, QualType Type);
private:
class ThisVisitor : public RecursiveASTVisitor<ThisVisitor> {
public:
explicit ThisVisitor(RefCountedInsideLambdaChecker& Checker)
: Checker(Checker) {}
bool VisitCXXThisExpr(CXXThisExpr *This);
private:
RefCountedInsideLambdaChecker& Checker;
};
ASTContext *Context;
};
class ExplicitOperatorBoolChecker : public MatchFinder::MatchCallback {
public:
virtual void run(const MatchFinder::MatchResult &Result);
};
class NoDuplicateRefCntMemberChecker : public MatchFinder::MatchCallback {
public:
virtual void run(const MatchFinder::MatchResult &Result);
};
class NeedsNoVTableTypeChecker : public MatchFinder::MatchCallback {
public:
virtual void run(const MatchFinder::MatchResult &Result);
};
class NonMemMovableTemplateArgChecker : public MatchFinder::MatchCallback {
public:
virtual void run(const MatchFinder::MatchResult &Result);
};
class NonMemMovableMemberChecker : public MatchFinder::MatchCallback {
public:
virtual void run(const MatchFinder::MatchResult &Result);
};
class ExplicitImplicitChecker : public MatchFinder::MatchCallback {
public:
virtual void run(const MatchFinder::MatchResult &Result);
};
class NoAutoTypeChecker : public MatchFinder::MatchCallback {
public:
virtual void run(const MatchFinder::MatchResult &Result);
};
class NoExplicitMoveConstructorChecker : public MatchFinder::MatchCallback {
public:
virtual void run(const MatchFinder::MatchResult &Result);
};
class RefCountedCopyConstructorChecker : public MatchFinder::MatchCallback {
public:
virtual void run(const MatchFinder::MatchResult &Result);
};
class AssertAssignmentChecker : public MatchFinder::MatchCallback {
public:
virtual void run(const MatchFinder::MatchResult &Result);
};
class KungFuDeathGripChecker : public MatchFinder::MatchCallback {
public:
virtual void run(const MatchFinder::MatchResult &Result);
};
class SprintfLiteralChecker : public MatchFinder::MatchCallback {
public:
virtual void run(const MatchFinder::MatchResult &Result);
};
class OverrideBaseCallChecker : public MatchFinder::MatchCallback {
public:
virtual void run(const MatchFinder::MatchResult &Result);
private:
void evaluateExpression(const Stmt *StmtExpr,
std::list<const CXXMethodDecl*> &MethodList);
void getRequiredBaseMethod(const CXXMethodDecl* Method,
std::list<const CXXMethodDecl*>& MethodsList);
void findBaseMethodCall(const CXXMethodDecl* Method,
std::list<const CXXMethodDecl*>& MethodsList);
bool isRequiredBaseMethod(const CXXMethodDecl *Method);
};
/*
* This is a companion checker for OverrideBaseCallChecker that rejects
* the usage of MOZ_REQUIRED_BASE_METHOD on non-virtual base methods.
*/
class OverrideBaseCallUsageChecker : public MatchFinder::MatchCallback {
public:
virtual void run(const MatchFinder::MatchResult &Result);
};
class NonParamInsideFunctionDeclChecker : public MatchFinder::MatchCallback {
public:
virtual void run(const MatchFinder::MatchResult &Result);
};
ScopeChecker Scope;
ArithmeticArgChecker ArithmeticArg;
TrivialCtorDtorChecker TrivialCtorDtor;
NaNExprChecker NaNExpr;
NoAddRefReleaseOnReturnChecker NoAddRefReleaseOnReturn;
RefCountedInsideLambdaChecker RefCountedInsideLambda;
ExplicitOperatorBoolChecker ExplicitOperatorBool;
NoDuplicateRefCntMemberChecker NoDuplicateRefCntMember;
NeedsNoVTableTypeChecker NeedsNoVTableType;
NonMemMovableTemplateArgChecker NonMemMovableTemplateArg;
NonMemMovableMemberChecker NonMemMovableMember;
ExplicitImplicitChecker ExplicitImplicit;
NoAutoTypeChecker NoAutoType;
NoExplicitMoveConstructorChecker NoExplicitMoveConstructor;
RefCountedCopyConstructorChecker RefCountedCopyConstructor;
AssertAssignmentChecker AssertAttribution;
KungFuDeathGripChecker KungFuDeathGrip;
SprintfLiteralChecker SprintfLiteral;
OverrideBaseCallChecker OverrideBaseCall;
OverrideBaseCallUsageChecker OverrideBaseCallUsage;
NonParamInsideFunctionDeclChecker NonParamInsideFunctionDecl;
MatchFinder AstMatcher;
};
namespace {
std::string getDeclarationNamespace(const Decl *Declaration) {
const DeclContext *DC =
Declaration->getDeclContext()->getEnclosingNamespaceContext();
const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
if (!ND) {
return "";
}
while (const DeclContext *ParentDC = ND->getParent()) {
if (!isa<NamespaceDecl>(ParentDC)) {
break;
}
ND = cast<NamespaceDecl>(ParentDC);
}
const auto &Name = ND->getName();
return Name;
}
bool isInIgnoredNamespaceForImplicitCtor(const Decl *Declaration) {
std::string Name = getDeclarationNamespace(Declaration);
if (Name == "") {
return false;
}
return Name == "std" || // standard C++ lib
Name == "__gnu_cxx" || // gnu C++ lib
Name == "boost" || // boost
Name == "webrtc" || // upstream webrtc
Name == "rtc" || // upstream webrtc 'base' package
Name.substr(0, 4) == "icu_" || // icu
Name == "google" || // protobuf
Name == "google_breakpad" || // breakpad
Name == "soundtouch" || // libsoundtouch
Name == "stagefright" || // libstagefright
Name == "MacFileUtilities" || // MacFileUtilities
Name == "dwarf2reader" || // dwarf2reader
Name == "arm_ex_to_module" || // arm_ex_to_module
Name == "testing" || // gtest
Name == "Json"; // jsoncpp
}
bool isInIgnoredNamespaceForImplicitConversion(const Decl *Declaration) {
std::string Name = getDeclarationNamespace(Declaration);
if (Name == "") {
return false;
}
return Name == "std" || // standard C++ lib
Name == "__gnu_cxx" || // gnu C++ lib
Name == "google_breakpad" || // breakpad
Name == "testing"; // gtest
}
bool isIgnoredPathForImplicitCtor(const Decl *Declaration) {
SourceLocation Loc = Declaration->getLocation();
const SourceManager &SM = Declaration->getASTContext().getSourceManager();
SmallString<1024> FileName = SM.getFilename(Loc);
llvm::sys::fs::make_absolute(FileName);
llvm::sys::path::reverse_iterator Begin = llvm::sys::path::rbegin(FileName),
End = llvm::sys::path::rend(FileName);
for (; Begin != End; ++Begin) {
if (Begin->compare_lower(StringRef("skia")) == 0 ||
Begin->compare_lower(StringRef("angle")) == 0 ||
Begin->compare_lower(StringRef("harfbuzz")) == 0 ||
Begin->compare_lower(StringRef("hunspell")) == 0 ||
Begin->compare_lower(StringRef("scoped_ptr.h")) == 0 ||
Begin->compare_lower(StringRef("graphite2")) == 0 ||
Begin->compare_lower(StringRef("icu")) == 0) {
return true;
}
if (Begin->compare_lower(StringRef("chromium")) == 0) {
// Ignore security/sandbox/chromium but not ipc/chromium.
++Begin;
return Begin != End && Begin->compare_lower(StringRef("sandbox")) == 0;
}
}
return false;
}
bool isIgnoredPathForImplicitConversion(const Decl *Declaration) {
Declaration = Declaration->getCanonicalDecl();
SourceLocation Loc = Declaration->getLocation();
const SourceManager &SM = Declaration->getASTContext().getSourceManager();
SmallString<1024> FileName = SM.getFilename(Loc);
llvm::sys::fs::make_absolute(FileName);
llvm::sys::path::reverse_iterator Begin = llvm::sys::path::rbegin(FileName),
End = llvm::sys::path::rend(FileName);
for (; Begin != End; ++Begin) {
if (Begin->compare_lower(StringRef("graphite2")) == 0) {
return true;
}
if (Begin->compare_lower(StringRef("chromium")) == 0) {
// Ignore security/sandbox/chromium but not ipc/chromium.
++Begin;
return Begin != End && Begin->compare_lower(StringRef("sandbox")) == 0;
}
}
return false;
}
bool isIgnoredPathForSprintfLiteral(const CallExpr *Call, const SourceManager &SM) {
SourceLocation Loc = Call->getLocStart();
SmallString<1024> FileName = SM.getFilename(Loc);
llvm::sys::fs::make_absolute(FileName);
llvm::sys::path::reverse_iterator Begin = llvm::sys::path::rbegin(FileName),
End = llvm::sys::path::rend(FileName);
for (; Begin != End; ++Begin) {
if (Begin->compare_lower(StringRef("angle")) == 0 ||
Begin->compare_lower(StringRef("chromium")) == 0 ||
Begin->compare_lower(StringRef("crashreporter")) == 0 ||
Begin->compare_lower(StringRef("google-breakpad")) == 0 ||
Begin->compare_lower(StringRef("harfbuzz")) == 0 ||
Begin->compare_lower(StringRef("libstagefright")) == 0 ||
Begin->compare_lower(StringRef("mtransport")) == 0 ||
Begin->compare_lower(StringRef("protobuf")) == 0 ||
Begin->compare_lower(StringRef("skia")) == 0 ||
// Gtest uses snprintf as GTEST_SNPRINTF_ with sizeof
Begin->compare_lower(StringRef("testing")) == 0) {
return true;
}
if (Begin->compare_lower(StringRef("webrtc")) == 0) {
// Ignore trunk/webrtc, but not media/webrtc
++Begin;
return Begin != End && Begin->compare_lower(StringRef("trunk")) == 0;
}
}
return false;
}
bool isInterestingDeclForImplicitConversion(const Decl *Declaration) {
return !isInIgnoredNamespaceForImplicitConversion(Declaration) &&
!isIgnoredPathForImplicitConversion(Declaration);
}
bool isIgnoredExprForMustUse(const Expr *E) {
if (const CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(E)) {
switch (OpCall->getOperator()) {
case OO_Equal:
case OO_PlusEqual:
case OO_MinusEqual:
case OO_StarEqual:
case OO_SlashEqual:
case OO_PercentEqual:
case OO_CaretEqual:
case OO_AmpEqual:
case OO_PipeEqual:
case OO_LessLessEqual:
case OO_GreaterGreaterEqual:
return true;
default:
return false;
}
}
if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
return Op->isAssignmentOp();
}
return false;
}
template<typename T>
StringRef getNameChecked(const T& D) {
return D->getIdentifier() ? D->getName() : "";
}
bool typeIsRefPtr(QualType Q) {
CXXRecordDecl *D = Q->getAsCXXRecordDecl();
if (!D || !D->getIdentifier()) {
return false;
}
StringRef name = D->getName();
if (name == "RefPtr" || name == "nsCOMPtr") {
return true;
}
return false;
}
// The method defined in clang for ignoring implicit nodes doesn't work with
// some AST trees. To get around this, we define our own implementation of
// IgnoreImplicit.
const Stmt *IgnoreImplicit(const Stmt *s) {
while (true) {
if (auto *ewc = dyn_cast<ExprWithCleanups>(s)) {
s = ewc->getSubExpr();
} else if (auto *mte = dyn_cast<MaterializeTemporaryExpr>(s)) {
s = mte->GetTemporaryExpr();
} else if (auto *bte = dyn_cast<CXXBindTemporaryExpr>(s)) {
s = bte->getSubExpr();
} else if (auto *ice = dyn_cast<ImplicitCastExpr>(s)) {
s = ice->getSubExpr();
} else {
break;
}
}
return s;
}
const Expr *IgnoreImplicit(const Expr *e) {
return cast<Expr>(IgnoreImplicit(static_cast<const Stmt *>(e)));
}
}
class CustomTypeAnnotation {
enum ReasonKind {
RK_None,
RK_Direct,
RK_ArrayElement,
RK_BaseClass,
RK_Field,
RK_TemplateInherited,
};
struct AnnotationReason {
QualType Type;
ReasonKind Kind;
const FieldDecl *Field;
bool valid() const { return Kind != RK_None; }
};
typedef DenseMap<void *, AnnotationReason> ReasonCache;
const char *Spelling;
const char *Pretty;
ReasonCache Cache;
public:
CustomTypeAnnotation(const char *Spelling, const char *Pretty)
: Spelling(Spelling), Pretty(Pretty){};
virtual ~CustomTypeAnnotation() {}
// Checks if this custom annotation "effectively affects" the given type.
bool hasEffectiveAnnotation(QualType T) {
return directAnnotationReason(T).valid();
}
void dumpAnnotationReason(DiagnosticsEngine &Diag, QualType T,
SourceLocation Loc);
void reportErrorIfPresent(DiagnosticsEngine &Diag, QualType T,
SourceLocation Loc, unsigned ErrorID,
unsigned NoteID) {
if (hasEffectiveAnnotation(T)) {
Diag.Report(Loc, ErrorID) << T;
Diag.Report(Loc, NoteID);
dumpAnnotationReason(Diag, T, Loc);
}
}
private:
bool hasLiteralAnnotation(QualType T) const;
AnnotationReason directAnnotationReason(QualType T);
AnnotationReason tmplArgAnnotationReason(ArrayRef<TemplateArgument> Args);
protected:
// Allow subclasses to apply annotations to external code:
virtual bool hasFakeAnnotation(const TagDecl *D) const { return false; }
};
static CustomTypeAnnotation StackClass =
CustomTypeAnnotation("moz_stack_class", "stack");
static CustomTypeAnnotation GlobalClass =
CustomTypeAnnotation("moz_global_class", "global");
static CustomTypeAnnotation NonHeapClass =
CustomTypeAnnotation("moz_nonheap_class", "non-heap");
static CustomTypeAnnotation HeapClass =
CustomTypeAnnotation("moz_heap_class", "heap");
static CustomTypeAnnotation NonTemporaryClass =
CustomTypeAnnotation("moz_non_temporary_class", "non-temporary");
static CustomTypeAnnotation MustUse =
CustomTypeAnnotation("moz_must_use_type", "must-use");
static CustomTypeAnnotation NonParam =
CustomTypeAnnotation("moz_non_param", "non-param");
class MemMoveAnnotation final : public CustomTypeAnnotation {
public:
MemMoveAnnotation()
: CustomTypeAnnotation("moz_non_memmovable", "non-memmove()able") {}
virtual ~MemMoveAnnotation() {}
protected:
bool hasFakeAnnotation(const TagDecl *D) const override {
// Annotate everything in ::std, with a few exceptions; see bug
// 1201314 for discussion.
if (getDeclarationNamespace(D) == "std") {
// This doesn't check that it's really ::std::pair and not
// ::std::something_else::pair, but should be good enough.
StringRef Name = getNameChecked(D);
if (Name == "pair" || Name == "atomic" || Name == "__atomic_base") {
return false;
}
return true;
}
return false;
}
};
static MemMoveAnnotation NonMemMovable = MemMoveAnnotation();
class MozChecker : public ASTConsumer, public RecursiveASTVisitor<MozChecker> {
DiagnosticsEngine &Diag;
const CompilerInstance &CI;
DiagnosticsMatcher Matcher;
public:
MozChecker(const CompilerInstance &CI) : Diag(CI.getDiagnostics()), CI(CI) {}
ASTConsumerPtr getOtherConsumer() { return Matcher.makeASTConsumer(); }
virtual void HandleTranslationUnit(ASTContext &Ctx) override {
TraverseDecl(Ctx.getTranslationUnitDecl());
}
static bool hasCustomAnnotation(const Decl *D, const char *Spelling) {
iterator_range<specific_attr_iterator<AnnotateAttr>> Attrs =
D->specific_attrs<AnnotateAttr>();
for (AnnotateAttr *Attr : Attrs) {
if (Attr->getAnnotation() == Spelling) {
return true;
}
}
return false;
}
void handleUnusedExprResult(const Stmt *Statement) {
const Expr *E = dyn_cast_or_null<Expr>(Statement);
if (E) {
E = E->IgnoreImplicit(); // Ignore ExprWithCleanup etc. implicit wrappers
QualType T = E->getType();
if (MustUse.hasEffectiveAnnotation(T) && !isIgnoredExprForMustUse(E)) {
unsigned ErrorID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error, "Unused value of must-use type %0");
Diag.Report(E->getLocStart(), ErrorID) << T;
MustUse.dumpAnnotationReason(Diag, T, E->getLocStart());
}
}
}
bool VisitCXXRecordDecl(CXXRecordDecl *D) {
// We need definitions, not declarations
if (!D->isThisDeclarationADefinition())
return true;
// Look through all of our immediate bases to find methods that need to be
// overridden
typedef std::vector<CXXMethodDecl *> OverridesVector;
OverridesVector MustOverrides;
for (CXXRecordDecl::base_class_iterator Base = D->bases_begin(),
E = D->bases_end();
Base != E; ++Base) {
// The base is either a class (CXXRecordDecl) or it's a templated class...
CXXRecordDecl *Parent = Base->getType()
.getDesugaredType(D->getASTContext())
->getAsCXXRecordDecl();
// The parent might not be resolved to a type yet. In this case, we can't
// do any checking here. For complete correctness, we should visit
// template instantiations, but this case is likely to be rare, so we will
// ignore it until it becomes important.
if (!Parent) {
continue;
}
Parent = Parent->getDefinition();
for (CXXRecordDecl::method_iterator M = Parent->method_begin();
M != Parent->method_end(); ++M) {
if (hasCustomAnnotation(*M, "moz_must_override"))
MustOverrides.push_back(*M);
}
}
for (OverridesVector::iterator It = MustOverrides.begin();
It != MustOverrides.end(); ++It) {
bool Overridden = false;
for (CXXRecordDecl::method_iterator M = D->method_begin();
!Overridden && M != D->method_end(); ++M) {
// The way that Clang checks if a method M overrides its parent method
// is if the method has the same name but would not overload.
if (getNameChecked(M) == getNameChecked(*It) &&
!CI.getSema().IsOverload(*M, (*It), false)) {
Overridden = true;
break;
}
}
if (!Overridden) {
unsigned OverrideID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error, "%0 must override %1");
unsigned OverrideNote = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Note, "function to override is here");
Diag.Report(D->getLocation(), OverrideID) << D->getDeclName()
<< (*It)->getDeclName();
Diag.Report((*It)->getLocation(), OverrideNote);
}
}
return true;
}
bool VisitSwitchCase(SwitchCase *Statement) {
handleUnusedExprResult(Statement->getSubStmt());
return true;
}
bool VisitCompoundStmt(CompoundStmt *Statement) {
for (CompoundStmt::body_iterator It = Statement->body_begin(),
E = Statement->body_end();
It != E; ++It) {
handleUnusedExprResult(*It);
}
return true;
}
bool VisitIfStmt(IfStmt *Statement) {
handleUnusedExprResult(Statement->getThen());
handleUnusedExprResult(Statement->getElse());
return true;
}
bool VisitWhileStmt(WhileStmt *Statement) {
handleUnusedExprResult(Statement->getBody());
return true;
}
bool VisitDoStmt(DoStmt *Statement) {
handleUnusedExprResult(Statement->getBody());
return true;
}
bool VisitForStmt(ForStmt *Statement) {
handleUnusedExprResult(Statement->getBody());
handleUnusedExprResult(Statement->getInit());
handleUnusedExprResult(Statement->getInc());
return true;
}
bool VisitBinComma(BinaryOperator *Op) {
handleUnusedExprResult(Op->getLHS());
return true;
}
};
/// A cached data of whether classes are refcounted or not.
typedef DenseMap<const CXXRecordDecl *, std::pair<const Decl *, bool>>
RefCountedMap;
RefCountedMap RefCountedClasses;
bool classHasAddRefRelease(const CXXRecordDecl *D) {
const RefCountedMap::iterator &It = RefCountedClasses.find(D);
if (It != RefCountedClasses.end()) {
return It->second.second;
}
bool SeenAddRef = false;
bool SeenRelease = false;
for (CXXRecordDecl::method_iterator Method = D->method_begin();
Method != D->method_end(); ++Method) {
const auto &Name = getNameChecked(Method);
if (Name == "AddRef") {
SeenAddRef = true;
} else if (Name == "Release") {
SeenRelease = true;
}
}
RefCountedClasses[D] = std::make_pair(D, SeenAddRef && SeenRelease);
return SeenAddRef && SeenRelease;
}
bool isClassRefCounted(QualType T);
bool isClassRefCounted(const CXXRecordDecl *D) {
// Normalize so that D points to the definition if it exists.
if (!D->hasDefinition())
return false;
D = D->getDefinition();
// Base class: anyone with AddRef/Release is obviously a refcounted class.
if (classHasAddRefRelease(D))
return true;
// Look through all base cases to figure out if the parent is a refcounted
// class.
for (CXXRecordDecl::base_class_const_iterator Base = D->bases_begin();
Base != D->bases_end(); ++Base) {
bool Super = isClassRefCounted(Base->getType());
if (Super) {
return true;
}
}
return false;
}
bool isClassRefCounted(QualType T) {
while (const clang::ArrayType *ArrTy = T->getAsArrayTypeUnsafe())
T = ArrTy->getElementType();
CXXRecordDecl *Clazz = T->getAsCXXRecordDecl();
return Clazz ? isClassRefCounted(Clazz) : false;
}
template <class T> bool ASTIsInSystemHeader(const ASTContext &AC, const T &D) {
auto &SourceManager = AC.getSourceManager();
auto ExpansionLoc = SourceManager.getExpansionLoc(D.getLocStart());
if (ExpansionLoc.isInvalid()) {
return false;
}
return SourceManager.isInSystemHeader(ExpansionLoc);
}
const FieldDecl *getClassRefCntMember(const CXXRecordDecl *D) {
for (RecordDecl::field_iterator Field = D->field_begin(), E = D->field_end();
Field != E; ++Field) {
if (getNameChecked(Field) == "mRefCnt") {
return *Field;
}
}
return 0;
}
const FieldDecl *getBaseRefCntMember(QualType T);
const FieldDecl *getBaseRefCntMember(const CXXRecordDecl *D) {
const FieldDecl *RefCntMember = getClassRefCntMember(D);
if (RefCntMember && isClassRefCounted(D)) {
return RefCntMember;
}
for (CXXRecordDecl::base_class_const_iterator Base = D->bases_begin(),
E = D->bases_end();
Base != E; ++Base) {
RefCntMember = getBaseRefCntMember(Base->getType());
if (RefCntMember) {
return RefCntMember;
}
}
return 0;
}
const FieldDecl *getBaseRefCntMember(QualType T) {
while (const clang::ArrayType *ArrTy = T->getAsArrayTypeUnsafe())
T = ArrTy->getElementType();
CXXRecordDecl *Clazz = T->getAsCXXRecordDecl();
return Clazz ? getBaseRefCntMember(Clazz) : 0;
}
bool typeHasVTable(QualType T) {
while (const clang::ArrayType *ArrTy = T->getAsArrayTypeUnsafe())
T = ArrTy->getElementType();
CXXRecordDecl *Offender = T->getAsCXXRecordDecl();
return Offender && Offender->hasDefinition() && Offender->isDynamicClass();
}
}
namespace clang {
namespace ast_matchers {
/// This matcher will match any function declaration that is declared as a heap
/// allocator.
AST_MATCHER(FunctionDecl, heapAllocator) {
return MozChecker::hasCustomAnnotation(&Node, "moz_heap_allocator");
}
/// This matcher will match any declaration that is marked as not accepting
/// arithmetic expressions in its arguments.
AST_MATCHER(Decl, noArithmeticExprInArgs) {
return MozChecker::hasCustomAnnotation(&Node, "moz_no_arith_expr_in_arg");
}
/// This matcher will match any C++ class that is marked as having a trivial
/// constructor and destructor.
AST_MATCHER(CXXRecordDecl, hasTrivialCtorDtor) {
return MozChecker::hasCustomAnnotation(&Node, "moz_trivial_ctor_dtor");
}
/// This matcher will match any function declaration that is marked to prohibit
/// calling AddRef or Release on its return value.
AST_MATCHER(FunctionDecl, hasNoAddRefReleaseOnReturnAttr) {
return MozChecker::hasCustomAnnotation(&Node,
"moz_no_addref_release_on_return");
}
/// This matcher will match all arithmetic binary operators.
AST_MATCHER(BinaryOperator, binaryArithmeticOperator) {
BinaryOperatorKind OpCode = Node.getOpcode();
return OpCode == BO_Mul || OpCode == BO_Div || OpCode == BO_Rem ||
OpCode == BO_Add || OpCode == BO_Sub || OpCode == BO_Shl ||
OpCode == BO_Shr || OpCode == BO_And || OpCode == BO_Xor ||
OpCode == BO_Or || OpCode == BO_MulAssign || OpCode == BO_DivAssign ||
OpCode == BO_RemAssign || OpCode == BO_AddAssign ||
OpCode == BO_SubAssign || OpCode == BO_ShlAssign ||
OpCode == BO_ShrAssign || OpCode == BO_AndAssign ||
OpCode == BO_XorAssign || OpCode == BO_OrAssign;
}
/// This matcher will match all arithmetic unary operators.
AST_MATCHER(UnaryOperator, unaryArithmeticOperator) {
UnaryOperatorKind OpCode = Node.getOpcode();
return OpCode == UO_PostInc || OpCode == UO_PostDec || OpCode == UO_PreInc ||
OpCode == UO_PreDec || OpCode == UO_Plus || OpCode == UO_Minus ||
OpCode == UO_Not;
}
/// This matcher will match == and != binary operators.
AST_MATCHER(BinaryOperator, binaryEqualityOperator) {
BinaryOperatorKind OpCode = Node.getOpcode();
return OpCode == BO_EQ || OpCode == BO_NE;
}
/// This matcher will match floating point types.
AST_MATCHER(QualType, isFloat) { return Node->isRealFloatingType(); }
/// This matcher will match locations in system headers. This is adopted from
/// isExpansionInSystemHeader in newer clangs, but modified in order to work
/// with old clangs that we use on infra.
AST_MATCHER(BinaryOperator, isInSystemHeader) {
return ASTIsInSystemHeader(Finder->getASTContext(), Node);
}
/// This matcher will match a list of files. These files contain
/// known NaN-testing expressions which we would like to whitelist.
AST_MATCHER(BinaryOperator, isInWhitelistForNaNExpr) {
const char* whitelist[] = {
"SkScalar.h",
"json_writer.cpp"
};
SourceLocation Loc = Node.getOperatorLoc();
auto &SourceManager = Finder->getASTContext().getSourceManager();
SmallString<1024> FileName = SourceManager.getFilename(Loc);
for (auto itr = std::begin(whitelist); itr != std::end(whitelist); itr++) {
if (llvm::sys::path::rbegin(FileName)->equals(*itr)) {
return true;
}
}
return false;
}
/// This matcher will match all accesses to AddRef or Release methods.
AST_MATCHER(MemberExpr, isAddRefOrRelease) {
ValueDecl *Member = Node.getMemberDecl();
CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member);
if (Method) {
const auto &Name = getNameChecked(Method);
return Name == "AddRef" || Name == "Release";
}
return false;
}
/// This matcher will select classes which are refcounted.
AST_MATCHER(CXXRecordDecl, hasRefCntMember) {
return isClassRefCounted(&Node) && getClassRefCntMember(&Node);
}
AST_MATCHER(QualType, hasVTable) { return typeHasVTable(Node); }
AST_MATCHER(CXXRecordDecl, hasNeedsNoVTableTypeAttr) {
return MozChecker::hasCustomAnnotation(&Node, "moz_needs_no_vtable_type");
}
/// This matcher will select classes which are non-memmovable
AST_MATCHER(QualType, isNonMemMovable) {
return NonMemMovable.hasEffectiveAnnotation(Node);
}
/// This matcher will select classes which require a memmovable template arg
AST_MATCHER(CXXRecordDecl, needsMemMovableTemplateArg) {
return MozChecker::hasCustomAnnotation(&Node, "moz_needs_memmovable_type");
}
/// This matcher will select classes which require all members to be memmovable
AST_MATCHER(CXXRecordDecl, needsMemMovableMembers) {
return MozChecker::hasCustomAnnotation(&Node, "moz_needs_memmovable_members");
}
AST_MATCHER(CXXConstructorDecl, isInterestingImplicitCtor) {
const CXXConstructorDecl *Declaration = Node.getCanonicalDecl();
return
// Skip ignored namespaces and paths
!isInIgnoredNamespaceForImplicitCtor(Declaration) &&
!isIgnoredPathForImplicitCtor(Declaration) &&
// We only want Converting constructors
Declaration->isConvertingConstructor(false) &&
// We don't want copy of move constructors, as those are allowed to be
// implicit
!Declaration->isCopyOrMoveConstructor() &&
// We don't want deleted constructors.
!Declaration->isDeleted();
}
// We can't call this "isImplicit" since it clashes with an existing matcher in
// clang.
AST_MATCHER(CXXConstructorDecl, isMarkedImplicit) {
return MozChecker::hasCustomAnnotation(&Node, "moz_implicit");
}
AST_MATCHER(CXXRecordDecl, isConcreteClass) { return !Node.isAbstract(); }
AST_MATCHER(QualType, autoNonAutoableType) {
if (const AutoType *T = Node->getContainedAutoType()) {
if (const CXXRecordDecl *Rec = T->getAsCXXRecordDecl()) {
return MozChecker::hasCustomAnnotation(Rec, "moz_non_autoable");
}
}
return false;
}
AST_MATCHER(CXXConstructorDecl, isExplicitMoveConstructor) {
return Node.isExplicit() && Node.isMoveConstructor();
}
AST_MATCHER(CXXConstructorDecl, isCompilerProvidedCopyConstructor) {
return !Node.isUserProvided() && Node.isCopyConstructor();
}
AST_MATCHER(CallExpr, isAssertAssignmentTestFunc) {
static const std::string AssertName = "MOZ_AssertAssignmentTest";
const FunctionDecl *Method = Node.getDirectCallee();
return Method
&& Method->getDeclName().isIdentifier()
&& Method->getName() == AssertName;
}
AST_MATCHER(CallExpr, isSnprintfLikeFunc) {
static const std::string Snprintf = "snprintf";
static const std::string Vsnprintf = "vsnprintf";
const FunctionDecl *Func = Node.getDirectCallee();
if (!Func || isa<CXXMethodDecl>(Func)) {
return false;
}
StringRef Name = getNameChecked(Func);
if (Name != Snprintf && Name != Vsnprintf) {
return false;
}
return !isIgnoredPathForSprintfLiteral(&Node, Finder->getASTContext().getSourceManager());
}
AST_MATCHER(CXXRecordDecl, isLambdaDecl) {
return Node.isLambda();
}
AST_MATCHER(QualType, isRefPtr) {
return typeIsRefPtr(Node);
}
AST_MATCHER(CXXRecordDecl, hasBaseClasses) {
const CXXRecordDecl *Decl = Node.getCanonicalDecl();
// Must have definition and should inherit other classes
return Decl && Decl->hasDefinition() && Decl->getNumBases();
}
AST_MATCHER(CXXMethodDecl, isRequiredBaseMethod) {
const CXXMethodDecl *Decl = Node.getCanonicalDecl();
return Decl
&& MozChecker::hasCustomAnnotation(Decl, "moz_required_base_method");
}
AST_MATCHER(CXXMethodDecl, isNonVirtual) {
const CXXMethodDecl *Decl = Node.getCanonicalDecl();
return Decl && !Decl->isVirtual();
}
}
}
namespace {
void CustomTypeAnnotation::dumpAnnotationReason(DiagnosticsEngine &Diag,
QualType T,
SourceLocation Loc) {
unsigned InheritsID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Note,
"%1 is a %0 type because it inherits from a %0 type %2");
unsigned MemberID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Note, "%1 is a %0 type because member %2 is a %0 type %3");
unsigned ArrayID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Note,
"%1 is a %0 type because it is an array of %0 type %2");
unsigned TemplID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Note,
"%1 is a %0 type because it has a template argument %0 type %2");
AnnotationReason Reason = directAnnotationReason(T);
for (;;) {
switch (Reason.Kind) {
case RK_ArrayElement:
Diag.Report(Loc, ArrayID) << Pretty << T << Reason.Type;
break;
case RK_BaseClass: {
const CXXRecordDecl *Declaration = T->getAsCXXRecordDecl();
assert(Declaration && "This type should be a C++ class");
Diag.Report(Declaration->getLocation(), InheritsID) << Pretty << T
<< Reason.Type;
break;
}
case RK_Field:
Diag.Report(Reason.Field->getLocation(), MemberID)
<< Pretty << T << Reason.Field << Reason.Type;
break;
case RK_TemplateInherited: {
const CXXRecordDecl *Declaration = T->getAsCXXRecordDecl();
assert(Declaration && "This type should be a C++ class");
Diag.Report(Declaration->getLocation(), TemplID) << Pretty << T
<< Reason.Type;
break;
}
default:
// FIXME (bug 1203263): note the original annotation.
return;
}
T = Reason.Type;
Reason = directAnnotationReason(T);
}
}
bool CustomTypeAnnotation::hasLiteralAnnotation(QualType T) const {
#if CLANG_VERSION_FULL >= 306
if (const TagDecl *D = T->getAsTagDecl()) {
#else
if (const CXXRecordDecl *D = T->getAsCXXRecordDecl()) {
#endif
return hasFakeAnnotation(D) || MozChecker::hasCustomAnnotation(D, Spelling);
}
return false;
}
CustomTypeAnnotation::AnnotationReason
CustomTypeAnnotation::directAnnotationReason(QualType T) {
if (hasLiteralAnnotation(T)) {
AnnotationReason Reason = {T, RK_Direct, nullptr};
return Reason;
}
// Check if we have a cached answer
void *Key = T.getAsOpaquePtr();
ReasonCache::iterator Cached = Cache.find(T.getAsOpaquePtr());
if (Cached != Cache.end()) {
return Cached->second;
}
// Check if we have a type which we can recurse into
if (const clang::ArrayType *Array = T->getAsArrayTypeUnsafe()) {
if (hasEffectiveAnnotation(Array->getElementType())) {
AnnotationReason Reason = {Array->getElementType(), RK_ArrayElement,
nullptr};
Cache[Key] = Reason;
return Reason;
}
}
// Recurse into Base classes
if (const CXXRecordDecl *Declaration = T->getAsCXXRecordDecl()) {
if (Declaration->hasDefinition()) {
Declaration = Declaration->getDefinition();
for (const CXXBaseSpecifier &Base : Declaration->bases()) {
if (hasEffectiveAnnotation(Base.getType())) {
AnnotationReason Reason = {Base.getType(), RK_BaseClass, nullptr};
Cache[Key] = Reason;
return Reason;
}
}
// Recurse into members
for (const FieldDecl *Field : Declaration->fields()) {
if (hasEffectiveAnnotation(Field->getType())) {
AnnotationReason Reason = {Field->getType(), RK_Field, Field};
Cache[Key] = Reason;
return Reason;
}
}
// Recurse into template arguments if the annotation
// MOZ_INHERIT_TYPE_ANNOTATIONS_FROM_TEMPLATE_ARGS is present
if (MozChecker::hasCustomAnnotation(
Declaration, "moz_inherit_type_annotations_from_template_args")) {
const ClassTemplateSpecializationDecl *Spec =
dyn_cast<ClassTemplateSpecializationDecl>(Declaration);
if (Spec) {
const TemplateArgumentList &Args = Spec->getTemplateArgs();
AnnotationReason Reason = tmplArgAnnotationReason(Args.asArray());
if (Reason.Kind != RK_None) {
Cache[Key] = Reason;
return Reason;
}
}
}
}
}
AnnotationReason Reason = {QualType(), RK_None, nullptr};
Cache[Key] = Reason;
return Reason;
}
CustomTypeAnnotation::AnnotationReason
CustomTypeAnnotation::tmplArgAnnotationReason(ArrayRef<TemplateArgument> Args) {
for (const TemplateArgument &Arg : Args) {
if (Arg.getKind() == TemplateArgument::Type) {
QualType Type = Arg.getAsType();
if (hasEffectiveAnnotation(Type)) {
AnnotationReason Reason = {Type, RK_TemplateInherited, nullptr};
return Reason;
}
} else if (Arg.getKind() == TemplateArgument::Pack) {
AnnotationReason Reason = tmplArgAnnotationReason(Arg.getPackAsArray());
if (Reason.Kind != RK_None) {
return Reason;
}
}
}
AnnotationReason Reason = {QualType(), RK_None, nullptr};
return Reason;
}
bool isPlacementNew(const CXXNewExpr *Expression) {
// Regular new expressions aren't placement new
if (Expression->getNumPlacementArgs() == 0)
return false;
const FunctionDecl *Declaration = Expression->getOperatorNew();
if (Declaration && MozChecker::hasCustomAnnotation(Declaration,
"moz_heap_allocator")) {
return false;
}
return true;
}
DiagnosticsMatcher::DiagnosticsMatcher() {
AstMatcher.addMatcher(varDecl().bind("node"), &Scope);
AstMatcher.addMatcher(cxxNewExpr().bind("node"), &Scope);
AstMatcher.addMatcher(materializeTemporaryExpr().bind("node"), &Scope);
AstMatcher.addMatcher(
callExpr(callee(functionDecl(heapAllocator()))).bind("node"),
&Scope);
AstMatcher.addMatcher(parmVarDecl().bind("parm_vardecl"), &Scope);
AstMatcher.addMatcher(
callExpr(allOf(hasDeclaration(noArithmeticExprInArgs()),
anyOf(hasDescendant(
binaryOperator(
allOf(binaryArithmeticOperator(),
hasLHS(hasDescendant(declRefExpr())),
hasRHS(hasDescendant(declRefExpr()))))
.bind("node")),
hasDescendant(
unaryOperator(
allOf(unaryArithmeticOperator(),
hasUnaryOperand(allOf(
hasType(builtinType()),
anyOf(hasDescendant(declRefExpr()),
declRefExpr())))))
.bind("node")))))
.bind("call"),
&ArithmeticArg);
AstMatcher.addMatcher(
cxxConstructExpr(
allOf(hasDeclaration(noArithmeticExprInArgs()),
anyOf(hasDescendant(
binaryOperator(
allOf(binaryArithmeticOperator(),
hasLHS(hasDescendant(declRefExpr())),
hasRHS(hasDescendant(declRefExpr()))))
.bind("node")),
hasDescendant(
unaryOperator(
allOf(unaryArithmeticOperator(),
hasUnaryOperand(allOf(
hasType(builtinType()),
anyOf(hasDescendant(declRefExpr()),
declRefExpr())))))
.bind("node")))))
.bind("call"),
&ArithmeticArg);
AstMatcher.addMatcher(cxxRecordDecl(hasTrivialCtorDtor()).bind("node"),
&TrivialCtorDtor);
AstMatcher.addMatcher(
binaryOperator(
allOf(binaryEqualityOperator(),
hasLHS(hasIgnoringParenImpCasts(
declRefExpr(hasType(qualType((isFloat())))).bind("lhs"))),
hasRHS(hasIgnoringParenImpCasts(
declRefExpr(hasType(qualType((isFloat())))).bind("rhs"))),
unless(anyOf(isInSystemHeader(), isInWhitelistForNaNExpr()))))
.bind("node"),
&NaNExpr);
// First, look for direct parents of the MemberExpr.
AstMatcher.addMatcher(
callExpr(
callee(functionDecl(hasNoAddRefReleaseOnReturnAttr()).bind("func")),
hasParent(memberExpr(isAddRefOrRelease(), hasParent(callExpr()))
.bind("member")))
.bind("node"),
&NoAddRefReleaseOnReturn);
// Then, look for MemberExpr that need to be casted to the right type using
// an intermediary CastExpr before we get to the CallExpr.
AstMatcher.addMatcher(
callExpr(
callee(functionDecl(hasNoAddRefReleaseOnReturnAttr()).bind("func")),
hasParent(castExpr(
hasParent(memberExpr(isAddRefOrRelease(), hasParent(callExpr()))
.bind("member")))))
.bind("node"),
&NoAddRefReleaseOnReturn);
// We want to reject any code which captures a pointer to an object of a
// refcounted type, and then lets that value escape. As a primitive analysis,
// we reject any occurances of the lambda as a template parameter to a class
// (which could allow it to escape), as well as any presence of such a lambda
// in a return value (either from lambdas, or in c++14, auto functions).
//
// We check these lambdas' capture lists for raw pointers to refcounted types.
AstMatcher.addMatcher(
functionDecl(returns(recordType(hasDeclaration(cxxRecordDecl(
isLambdaDecl()).bind("decl"))))),
&RefCountedInsideLambda);
AstMatcher.addMatcher(lambdaExpr().bind("lambdaExpr"),
&RefCountedInsideLambda);
AstMatcher.addMatcher(
classTemplateSpecializationDecl(hasAnyTemplateArgument(refersToType(
recordType(hasDeclaration(cxxRecordDecl(
isLambdaDecl()).bind("decl")))))),
&RefCountedInsideLambda);
// Older clang versions such as the ones used on the infra recognize these
// conversions as 'operator _Bool', but newer clang versions recognize these
// as 'operator bool'.
AstMatcher.addMatcher(
cxxMethodDecl(anyOf(hasName("operator bool"), hasName("operator _Bool")))
.bind("node"),
&ExplicitOperatorBool);
AstMatcher.addMatcher(cxxRecordDecl().bind("decl"), &NoDuplicateRefCntMember);
AstMatcher.addMatcher(
classTemplateSpecializationDecl(
allOf(hasAnyTemplateArgument(refersToType(hasVTable())),
hasNeedsNoVTableTypeAttr()))
.bind("node"),
&NeedsNoVTableType);
// Handle non-mem-movable template specializations
AstMatcher.addMatcher(
classTemplateSpecializationDecl(
allOf(needsMemMovableTemplateArg(),
hasAnyTemplateArgument(refersToType(isNonMemMovable()))))
.bind("specialization"),
&NonMemMovableTemplateArg);
// Handle non-mem-movable members
AstMatcher.addMatcher(
cxxRecordDecl(needsMemMovableMembers())
.bind("decl"),
&NonMemMovableMember);
AstMatcher.addMatcher(cxxConstructorDecl(isInterestingImplicitCtor(),
ofClass(allOf(isConcreteClass(),
decl().bind("class"))),
unless(isMarkedImplicit()))
.bind("ctor"),
&ExplicitImplicit);
AstMatcher.addMatcher(varDecl(hasType(autoNonAutoableType())).bind("node"),
&NoAutoType);
AstMatcher.addMatcher(
cxxConstructorDecl(isExplicitMoveConstructor()).bind("node"),
&NoExplicitMoveConstructor);
AstMatcher.addMatcher(
cxxConstructExpr(
hasDeclaration(cxxConstructorDecl(isCompilerProvidedCopyConstructor(),
ofClass(hasRefCntMember()))))
.bind("node"),
&RefCountedCopyConstructor);
AstMatcher.addMatcher(
callExpr(isAssertAssignmentTestFunc()).bind("funcCall"),
&AssertAttribution);
AstMatcher.addMatcher(varDecl(hasType(isRefPtr())).bind("decl"),
&KungFuDeathGrip);
AstMatcher.addMatcher(
callExpr(isSnprintfLikeFunc(),
allOf(hasArgument(0, ignoringParenImpCasts(declRefExpr().bind("buffer"))),
anyOf(hasArgument(1, sizeOfExpr(hasIgnoringParenImpCasts(declRefExpr().bind("size")))),
hasArgument(1, integerLiteral().bind("immediate")),
hasArgument(1, declRefExpr(to(varDecl(hasType(isConstQualified()),
hasInitializer(integerLiteral().bind("constant")))))))))
.bind("funcCall"),
&SprintfLiteral
);
AstMatcher.addMatcher(cxxRecordDecl(hasBaseClasses()).bind("class"),
&OverrideBaseCall);
AstMatcher.addMatcher(
cxxMethodDecl(isNonVirtual(), isRequiredBaseMethod()).bind("method"),
&OverrideBaseCallUsage);
AstMatcher.addMatcher(
functionDecl(anyOf(allOf(isDefinition(),
hasAncestor(classTemplateSpecializationDecl()
.bind("spec"))),
isDefinition()))
.bind("func"),
&NonParamInsideFunctionDecl);
AstMatcher.addMatcher(
lambdaExpr().bind("lambda"),
&NonParamInsideFunctionDecl);
}
// These enum variants determine whether an allocation has occured in the code.
enum AllocationVariety {
AV_None,
AV_Global,
AV_Automatic,
AV_Temporary,
AV_Heap,
};
// XXX Currently the Decl* in the AutomaticTemporaryMap is unused, but it
// probably will be used at some point in the future, in order to produce better
// error messages.
typedef DenseMap<const MaterializeTemporaryExpr *, const Decl *>
AutomaticTemporaryMap;
AutomaticTemporaryMap AutomaticTemporaries;
void DiagnosticsMatcher::ScopeChecker::run(
const MatchFinder::MatchResult &Result) {
DiagnosticsEngine &Diag = Result.Context->getDiagnostics();
// There are a variety of different reasons why something could be allocated
AllocationVariety Variety = AV_None;
SourceLocation Loc;
QualType T;
if (const ParmVarDecl *D =
Result.Nodes.getNodeAs<ParmVarDecl>("parm_vardecl")) {
if (D->hasUnparsedDefaultArg() || D->hasUninstantiatedDefaultArg()) {
return;
}
if (const Expr *Default = D->getDefaultArg()) {
if (const MaterializeTemporaryExpr *E =
dyn_cast<MaterializeTemporaryExpr>(Default)) {
// We have just found a ParmVarDecl which has, as its default argument,
// a MaterializeTemporaryExpr. We mark that MaterializeTemporaryExpr as
// automatic, by adding it to the AutomaticTemporaryMap.
// Reporting on this type will occur when the MaterializeTemporaryExpr
// is matched against.
AutomaticTemporaries[E] = D;
}
}
return;
}
// Determine the type of allocation which we detected
if (const VarDecl *D = Result.Nodes.getNodeAs<VarDecl>("node")) {
if (D->hasGlobalStorage()) {
Variety = AV_Global;
} else {
Variety = AV_Automatic;
}
T = D->getType();
Loc = D->getLocStart();
} else if (const CXXNewExpr *E = Result.Nodes.getNodeAs<CXXNewExpr>("node")) {
// New allocates things on the heap.
// We don't consider placement new to do anything, as it doesn't actually
// allocate the storage, and thus gives us no useful information.
if (!isPlacementNew(E)) {
Variety = AV_Heap;
T = E->getAllocatedType();
Loc = E->getLocStart();
}
} else if (const MaterializeTemporaryExpr *E =
Result.Nodes.getNodeAs<MaterializeTemporaryExpr>("node")) {
// Temporaries can actually have varying storage durations, due to temporary
// lifetime extension. We consider the allocation variety of this temporary
// to be the same as the allocation variety of its lifetime.
// XXX We maybe should mark these lifetimes as being due to a temporary
// which has had its lifetime extended, to improve the error messages.
switch (E->getStorageDuration()) {
case SD_FullExpression: {
// Check if this temporary is allocated as a default argument!
// if it is, we want to pretend that it is automatic.
AutomaticTemporaryMap::iterator AutomaticTemporary =
AutomaticTemporaries.find(E);
if (AutomaticTemporary != AutomaticTemporaries.end()) {
Variety = AV_Automatic;
} else {
Variety = AV_Temporary;
}
} break;
case SD_Automatic:
Variety = AV_Automatic;
break;
case SD_Thread:
case SD_Static:
Variety = AV_Global;
break;
case SD_Dynamic:
assert(false && "I don't think that this ever should occur...");
Variety = AV_Heap;
break;
}
T = E->getType().getUnqualifiedType();
Loc = E->getLocStart();
} else if (const CallExpr *E = Result.Nodes.getNodeAs<CallExpr>("node")) {
T = E->getType()->getPointeeType();
if (!T.isNull()) {
// This will always allocate on the heap, as the heapAllocator() check
// was made in the matcher
Variety = AV_Heap;
Loc = E->getLocStart();
}
}
// Error messages for incorrect allocations.
unsigned StackID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error, "variable of type %0 only valid on the stack");
unsigned GlobalID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error, "variable of type %0 only valid as global");
unsigned HeapID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error, "variable of type %0 only valid on the heap");
unsigned NonHeapID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error, "variable of type %0 is not valid on the heap");
unsigned NonTemporaryID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error, "variable of type %0 is not valid in a temporary");
unsigned StackNoteID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Note,
"value incorrectly allocated in an automatic variable");
unsigned GlobalNoteID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Note, "value incorrectly allocated in a global variable");
unsigned HeapNoteID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Note, "value incorrectly allocated on the heap");
unsigned TemporaryNoteID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Note, "value incorrectly allocated in a temporary");
// Report errors depending on the annotations on the input types.
switch (Variety) {
case AV_None:
return;
case AV_Global:
StackClass.reportErrorIfPresent(Diag, T, Loc, StackID, GlobalNoteID);
HeapClass.reportErrorIfPresent(Diag, T, Loc, HeapID, GlobalNoteID);
break;
case AV_Automatic:
GlobalClass.reportErrorIfPresent(Diag, T, Loc, GlobalID, StackNoteID);
HeapClass.reportErrorIfPresent(Diag, T, Loc, HeapID, StackNoteID);
break;
case AV_Temporary:
GlobalClass.reportErrorIfPresent(Diag, T, Loc, GlobalID, TemporaryNoteID);
HeapClass.reportErrorIfPresent(Diag, T, Loc, HeapID, TemporaryNoteID);
NonTemporaryClass.reportErrorIfPresent(Diag, T, Loc, NonTemporaryID,
TemporaryNoteID);
break;
case AV_Heap:
GlobalClass.reportErrorIfPresent(Diag, T, Loc, GlobalID, HeapNoteID);
StackClass.reportErrorIfPresent(Diag, T, Loc, StackID, HeapNoteID);
NonHeapClass.reportErrorIfPresent(Diag, T, Loc, NonHeapID, HeapNoteID);
break;
}
}
void DiagnosticsMatcher::ArithmeticArgChecker::run(
const MatchFinder::MatchResult &Result) {
DiagnosticsEngine &Diag = Result.Context->getDiagnostics();
unsigned ErrorID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error,
"cannot pass an arithmetic expression of built-in types to %0");
const Expr *Expression = Result.Nodes.getNodeAs<Expr>("node");
if (const CallExpr *Call = Result.Nodes.getNodeAs<CallExpr>("call")) {
Diag.Report(Expression->getLocStart(), ErrorID) << Call->getDirectCallee();
} else if (const CXXConstructExpr *Ctr =
Result.Nodes.getNodeAs<CXXConstructExpr>("call")) {
Diag.Report(Expression->getLocStart(), ErrorID) << Ctr->getConstructor();
}
}
void DiagnosticsMatcher::TrivialCtorDtorChecker::run(
const MatchFinder::MatchResult &Result) {
DiagnosticsEngine &Diag = Result.Context->getDiagnostics();
unsigned ErrorID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error,
"class %0 must have trivial constructors and destructors");
const CXXRecordDecl *Node = Result.Nodes.getNodeAs<CXXRecordDecl>("node");
// We need to accept non-constexpr trivial constructors as well. This occurs
// when a struct contains pod members, which will not be initialized. As
// constexpr values are initialized, the constructor is non-constexpr.
bool BadCtor = !(Node->hasConstexprDefaultConstructor() ||
Node->hasTrivialDefaultConstructor());
bool BadDtor = !Node->hasTrivialDestructor();
if (BadCtor || BadDtor)
Diag.Report(Node->getLocStart(), ErrorID) << Node;
}
void DiagnosticsMatcher::NaNExprChecker::run(
const MatchFinder::MatchResult &Result) {
if (!Result.Context->getLangOpts().CPlusPlus) {
// mozilla::IsNaN is not usable in C, so there is no point in issuing these
// warnings.
return;
}
DiagnosticsEngine &Diag = Result.Context->getDiagnostics();
unsigned ErrorID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error, "comparing a floating point value to itself for "
"NaN checking can lead to incorrect results");
unsigned NoteID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Note, "consider using mozilla::IsNaN instead");
const BinaryOperator *Expression = Result.Nodes.getNodeAs<BinaryOperator>(
"node");
const DeclRefExpr *LHS = Result.Nodes.getNodeAs<DeclRefExpr>("lhs");
const DeclRefExpr *RHS = Result.Nodes.getNodeAs<DeclRefExpr>("rhs");
const ImplicitCastExpr *LHSExpr = dyn_cast<ImplicitCastExpr>(
Expression->getLHS());
const ImplicitCastExpr *RHSExpr = dyn_cast<ImplicitCastExpr>(
Expression->getRHS());
// The AST subtree that we are looking for will look like this:
// -BinaryOperator ==/!=
// |-ImplicitCastExpr LValueToRValue
// | |-DeclRefExpr
// |-ImplicitCastExpr LValueToRValue
// |-DeclRefExpr
// The check below ensures that we are dealing with the correct AST subtree
// shape, and
// also that both of the found DeclRefExpr's point to the same declaration.
if (LHS->getFoundDecl() == RHS->getFoundDecl() && LHSExpr && RHSExpr &&
std::distance(LHSExpr->child_begin(), LHSExpr->child_end()) == 1 &&
std::distance(RHSExpr->child_begin(), RHSExpr->child_end()) == 1 &&
*LHSExpr->child_begin() == LHS && *RHSExpr->child_begin() == RHS) {
Diag.Report(Expression->getLocStart(), ErrorID);
Diag.Report(Expression->getLocStart(), NoteID);
}
}
void DiagnosticsMatcher::NoAddRefReleaseOnReturnChecker::run(
const MatchFinder::MatchResult &Result) {
DiagnosticsEngine &Diag = Result.Context->getDiagnostics();
unsigned ErrorID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error, "%1 cannot be called on the return value of %0");
const Stmt *Node = Result.Nodes.getNodeAs<Stmt>("node");
const FunctionDecl *Func = Result.Nodes.getNodeAs<FunctionDecl>("func");
const MemberExpr *Member = Result.Nodes.getNodeAs<MemberExpr>("member");
const CXXMethodDecl *Method =
dyn_cast<CXXMethodDecl>(Member->getMemberDecl());
Diag.Report(Node->getLocStart(), ErrorID) << Func << Method;
}
void DiagnosticsMatcher::RefCountedInsideLambdaChecker::run(
const MatchFinder::MatchResult &Result) {
Context = Result.Context;
static DenseSet<const CXXRecordDecl*> CheckedDecls;
const CXXRecordDecl *Lambda = Result.Nodes.getNodeAs<CXXRecordDecl>("decl");
if (const LambdaExpr *OuterLambda =
Result.Nodes.getNodeAs<LambdaExpr>("lambdaExpr")) {
const CXXMethodDecl *OpCall = OuterLambda->getCallOperator();
QualType ReturnTy = OpCall->getReturnType();
if (const CXXRecordDecl *Record = ReturnTy->getAsCXXRecordDecl()) {
Lambda = Record;
}
}
if (!Lambda || !Lambda->isLambda()) {
return;
}
// Don't report errors on the same declarations more than once.
if (CheckedDecls.count(Lambda)) {
return;
}
CheckedDecls.insert(Lambda);
bool StrongRefToThisCaptured = false;
for (const LambdaCapture& Capture : Lambda->captures()) {
// Check if any of the captures are ByRef. If they are, we have nothing to
// report, as it's OK to capture raw pointers to refcounted objects so long as
// the Lambda doesn't escape the current scope, which is required by ByRef
// captures already.
if (Capture.getCaptureKind() == LCK_ByRef) {
return;
}
// Check if this capture is byvalue, and captures a strong reference to this.
// XXX: Do we want to make sure that this type which we are capturing is a "Smart Pointer" somehow?
if (!StrongRefToThisCaptured &&
Capture.capturesVariable() &&
Capture.getCaptureKind() == LCK_ByCopy) {
const VarDecl *Var = Capture.getCapturedVar();
if (Var->hasInit()) {
const Stmt *Init = Var->getInit();
// Ignore single argument constructors, and trivial nodes.
while (true) {
auto NewInit = IgnoreImplicit(Init);
if (auto ConstructExpr = dyn_cast<CXXConstructExpr>(NewInit)) {
if (ConstructExpr->getNumArgs() == 1) {
NewInit = ConstructExpr->getArg(0);
}
}
if (Init == NewInit) {
break;
}
Init = NewInit;
}
if (isa<CXXThisExpr>(Init)) {
StrongRefToThisCaptured = true;
}
}
}
}
// Now we can go through and produce errors for any captured variables or this pointers.
for (const LambdaCapture& Capture : Lambda->captures()) {
if (Capture.capturesVariable()) {
QualType Pointee = Capture.getCapturedVar()->getType()->getPointeeType();
if (!Pointee.isNull() && isClassRefCounted(Pointee)) {
emitDiagnostics(Capture.getLocation(), Capture.getCapturedVar()->getName(), Pointee);
return;
}
}
// The situation with captures of `this` is more complex. All captures of
// `this` look the same-ish (they are LCK_This). We want to complain about
// captures of `this` where `this` is a refcounted type, and the capture is
// actually used in the body of the lambda (if the capture isn't used, then
// we don't care, because it's only being captured in order to give access
// to private methods).
//
// In addition, we don't complain about this, even if it is used, if it was
// captured implicitly when the LambdaCaptureDefault was LCD_ByRef, as that
// expresses the intent that the lambda won't leave the enclosing scope.
bool ImplicitByRefDefaultedCapture =
Capture.isImplicit() && Lambda->getLambdaCaptureDefault() == LCD_ByRef;
if (Capture.capturesThis() &&
!ImplicitByRefDefaultedCapture &&
!StrongRefToThisCaptured) {
ThisVisitor V(*this);
bool NotAborted = V.TraverseDecl(const_cast<CXXMethodDecl *>(Lambda->getLambdaCallOperator()));
if (!NotAborted) {
return;
}
}
}
}
void DiagnosticsMatcher::RefCountedInsideLambdaChecker::emitDiagnostics(
SourceLocation Loc, StringRef Name, QualType Type) {
DiagnosticsEngine& Diag = Context->getDiagnostics();
unsigned ErrorID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error, "Refcounted variable '%0' of type %1 cannot be captured by a lambda");
unsigned NoteID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Note, "Please consider using a smart pointer");
Diag.Report(Loc, ErrorID) << Name << Type;
Diag.Report(Loc, NoteID);
}
bool DiagnosticsMatcher::RefCountedInsideLambdaChecker::ThisVisitor::VisitCXXThisExpr(CXXThisExpr *This) {
QualType Pointee = This->getType()->getPointeeType();
if (!Pointee.isNull() && isClassRefCounted(Pointee)) {
Checker.emitDiagnostics(This->getLocStart(), "this", Pointee);
return false;
}
return true;
}
void DiagnosticsMatcher::ExplicitOperatorBoolChecker::run(
const MatchFinder::MatchResult &Result) {
DiagnosticsEngine &Diag = Result.Context->getDiagnostics();
unsigned ErrorID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error, "bad implicit conversion operator for %0");
unsigned NoteID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Note, "consider adding the explicit keyword to %0");
const CXXConversionDecl *Method =
Result.Nodes.getNodeAs<CXXConversionDecl>("node");
const CXXRecordDecl *Clazz = Method->getParent();
if (!Method->isExplicitSpecified() &&
!MozChecker::hasCustomAnnotation(Method, "moz_implicit") &&
!ASTIsInSystemHeader(Method->getASTContext(), *Method) &&
isInterestingDeclForImplicitConversion(Method)) {
Diag.Report(Method->getLocStart(), ErrorID) << Clazz;
Diag.Report(Method->getLocStart(), NoteID) << "'operator bool'";
}
}
void DiagnosticsMatcher::NoDuplicateRefCntMemberChecker::run(
const MatchFinder::MatchResult &Result) {
DiagnosticsEngine &Diag = Result.Context->getDiagnostics();
const CXXRecordDecl *D = Result.Nodes.getNodeAs<CXXRecordDecl>("decl");
const FieldDecl *RefCntMember = getClassRefCntMember(D);
const FieldDecl *FoundRefCntBase = nullptr;
if (!D->hasDefinition())
return;
D = D->getDefinition();
// If we don't have an mRefCnt member, and we have less than 2 superclasses,
// we don't have to run this loop, as neither case will ever apply.
if (!RefCntMember && D->getNumBases() < 2) {
return;
}
// Check every superclass for whether it has a base with a refcnt member, and
// warn for those which do
for (auto &Base : D->bases()) {
// Determine if this base class has an mRefCnt member
const FieldDecl *BaseRefCntMember = getBaseRefCntMember(Base.getType());
if (BaseRefCntMember) {
if (RefCntMember) {
// We have an mRefCnt, and superclass has an mRefCnt
unsigned Error = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error,
"Refcounted record %0 has multiple mRefCnt members");
unsigned Note1 = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Note, "Superclass %0 also has an mRefCnt member");
unsigned Note2 = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Note,
"Consider using the _INHERITED macros for AddRef and Release here");
Diag.Report(D->getLocStart(), Error) << D;
Diag.Report(BaseRefCntMember->getLocStart(), Note1)
<< BaseRefCntMember->getParent();
Diag.Report(RefCntMember->getLocStart(), Note2);
}
if (FoundRefCntBase) {
unsigned Error = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error,
"Refcounted record %0 has multiple superclasses with mRefCnt members");
unsigned Note = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Note,
"Superclass %0 has an mRefCnt member");
// superclass has mRefCnt, and another superclass also has an mRefCnt
Diag.Report(D->getLocStart(), Error) << D;
Diag.Report(BaseRefCntMember->getLocStart(), Note)
<< BaseRefCntMember->getParent();
Diag.Report(FoundRefCntBase->getLocStart(), Note)
<< FoundRefCntBase->getParent();
}
// Record that we've found a base with a mRefCnt member
FoundRefCntBase = BaseRefCntMember;
}
}
}
void DiagnosticsMatcher::NeedsNoVTableTypeChecker::run(
const MatchFinder::MatchResult &Result) {
DiagnosticsEngine &Diag = Result.Context->getDiagnostics();
unsigned ErrorID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error,
"%0 cannot be instantiated because %1 has a VTable");
unsigned NoteID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Note, "bad instantiation of %0 requested here");
const ClassTemplateSpecializationDecl *Specialization =
Result.Nodes.getNodeAs<ClassTemplateSpecializationDecl>("node");
// Get the offending template argument
QualType Offender;
const TemplateArgumentList &Args =
Specialization->getTemplateInstantiationArgs();
for (unsigned i = 0; i < Args.size(); ++i) {
Offender = Args[i].getAsType();
if (typeHasVTable(Offender)) {
break;
}
}
Diag.Report(Specialization->getLocStart(), ErrorID) << Specialization
<< Offender;
Diag.Report(Specialization->getPointOfInstantiation(), NoteID)
<< Specialization;
}
void DiagnosticsMatcher::NonMemMovableTemplateArgChecker::run(
const MatchFinder::MatchResult &Result) {
DiagnosticsEngine &Diag = Result.Context->getDiagnostics();
unsigned ErrorID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error,
"Cannot instantiate %0 with non-memmovable template argument %1");
unsigned Note1ID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Note, "instantiation of %0 requested here");
// Get the specialization
const ClassTemplateSpecializationDecl *Specialization =
Result.Nodes.getNodeAs<ClassTemplateSpecializationDecl>("specialization");
SourceLocation RequestLoc = Specialization->getPointOfInstantiation();
// Report an error for every template argument which is non-memmovable
const TemplateArgumentList &Args =
Specialization->getTemplateInstantiationArgs();
for (unsigned i = 0; i < Args.size(); ++i) {
QualType ArgType = Args[i].getAsType();
if (NonMemMovable.hasEffectiveAnnotation(ArgType)) {
Diag.Report(Specialization->getLocation(), ErrorID) << Specialization
<< ArgType;
// XXX It would be really nice if we could get the instantiation stack
// information
// from Sema such that we could print a full template instantiation stack,
// however,
// it seems as though that information is thrown out by the time we get
// here so we
// can only report one level of template specialization (which in many
// cases won't
// be useful)
Diag.Report(RequestLoc, Note1ID) << Specialization;
NonMemMovable.dumpAnnotationReason(Diag, ArgType, RequestLoc);
}
}
}
void DiagnosticsMatcher::NonMemMovableMemberChecker::run(
const MatchFinder::MatchResult &Result) {
DiagnosticsEngine &Diag = Result.Context->getDiagnostics();
unsigned ErrorID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error,
"class %0 cannot have non-memmovable member %1 of type %2");
// Get the specialization
const CXXRecordDecl* Declaration =
Result.Nodes.getNodeAs<CXXRecordDecl>("decl");
// Report an error for every member which is non-memmovable
for (const FieldDecl *Field : Declaration->fields()) {
QualType Type = Field->getType();
if (NonMemMovable.hasEffectiveAnnotation(Type)) {
Diag.Report(Field->getLocation(), ErrorID) << Declaration
<< Field
<< Type;
NonMemMovable.dumpAnnotationReason(Diag, Type, Declaration->getLocation());
}
}
}
void DiagnosticsMatcher::ExplicitImplicitChecker::run(
const MatchFinder::MatchResult &Result) {
DiagnosticsEngine &Diag = Result.Context->getDiagnostics();
unsigned ErrorID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error, "bad implicit conversion constructor for %0");
unsigned NoteID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Note,
"consider adding the explicit keyword to the constructor");
// We've already checked everything in the matcher, so we just have to report
// the error.
const CXXConstructorDecl *Ctor =
Result.Nodes.getNodeAs<CXXConstructorDecl>("ctor");
const CXXRecordDecl *Declaration =
Result.Nodes.getNodeAs<CXXRecordDecl>("class");
Diag.Report(Ctor->getLocation(), ErrorID) << Declaration->getDeclName();
Diag.Report(Ctor->getLocation(), NoteID);
}
void DiagnosticsMatcher::NoAutoTypeChecker::run(
const MatchFinder::MatchResult &Result) {
DiagnosticsEngine &Diag = Result.Context->getDiagnostics();
unsigned ErrorID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error, "Cannot use auto to declare a variable of type %0");
unsigned NoteID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Note, "Please write out this type explicitly");
const VarDecl *D = Result.Nodes.getNodeAs<VarDecl>("node");
Diag.Report(D->getLocation(), ErrorID) << D->getType();
Diag.Report(D->getLocation(), NoteID);
}
void DiagnosticsMatcher::NoExplicitMoveConstructorChecker::run(
const MatchFinder::MatchResult &Result) {
DiagnosticsEngine &Diag = Result.Context->getDiagnostics();
unsigned ErrorID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error, "Move constructors may not be marked explicit");
// Everything we needed to know was checked in the matcher - we just report
// the error here
const CXXConstructorDecl *D =
Result.Nodes.getNodeAs<CXXConstructorDecl>("node");
Diag.Report(D->getLocation(), ErrorID);
}
void DiagnosticsMatcher::RefCountedCopyConstructorChecker::run(
const MatchFinder::MatchResult &Result) {
DiagnosticsEngine &Diag = Result.Context->getDiagnostics();
unsigned ErrorID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error, "Invalid use of compiler-provided copy constructor "
"on refcounted type");
unsigned NoteID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Note,
"The default copy constructor also copies the "
"default mRefCnt property, leading to reference "
"count imbalance issues. Please provide your own "
"copy constructor which only copies the fields which "
"need to be copied");
// Everything we needed to know was checked in the matcher - we just report
// the error here
const CXXConstructExpr *E = Result.Nodes.getNodeAs<CXXConstructExpr>("node");
Diag.Report(E->getLocation(), ErrorID);
Diag.Report(E->getLocation(), NoteID);
}
void DiagnosticsMatcher::AssertAssignmentChecker::run(
const MatchFinder::MatchResult &Result) {
DiagnosticsEngine &Diag = Result.Context->getDiagnostics();
unsigned AssignInsteadOfComp = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error, "Forbidden assignment in assert expression");
const CallExpr *FuncCall = Result.Nodes.getNodeAs<CallExpr>("funcCall");
if (FuncCall && hasSideEffectAssignment(FuncCall)) {
Diag.Report(FuncCall->getLocStart(), AssignInsteadOfComp);
}
}
void DiagnosticsMatcher::KungFuDeathGripChecker::run(
const MatchFinder::MatchResult &Result) {
DiagnosticsEngine &Diag = Result.Context->getDiagnostics();
unsigned ErrorID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error,
"Unused \"kungFuDeathGrip\" %0 objects constructed from %1 are prohibited");
unsigned NoteID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Note,
"Please switch all accesses to this %0 to go through '%1', or explicitly pass '%1' to `mozilla::Unused`");
const VarDecl *D = Result.Nodes.getNodeAs<VarDecl>("decl");
if (D->isReferenced() || !D->hasLocalStorage() || !D->hasInit()) {
return;
}
// Not interested in parameters.
if (isa<ImplicitParamDecl>(D) || isa<ParmVarDecl>(D)) {
return;
}
const Expr *E = IgnoreImplicit(D->getInit());
const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E);
if (CE && CE->getNumArgs() == 0) {
// We don't report an error when we construct and don't use a nsCOMPtr /
// nsRefPtr with no arguments. We don't report it because the error is not
// related to the current check. In the future it may be reported through a
// more generic mechanism.
return;
}
// We don't want to look at the single argument conversion constructors
// which are inbetween the declaration and the actual object which we are
// assigning into the nsCOMPtr/RefPtr. To do this, we repeatedly
// IgnoreImplicit, then look at the expression. If it is one of these
// conversion constructors, we ignore it and continue to dig.
while ((CE = dyn_cast<CXXConstructExpr>(E)) && CE->getNumArgs() == 1) {
E = IgnoreImplicit(CE->getArg(0));
}
// We allow taking a kungFuDeathGrip of `this` because it cannot change
// beneath us, so calling directly through `this` is OK. This is the same
// for local variable declarations.
//
// We also don't complain about unused RefPtrs which are constructed from
// the return value of a new expression, as these are required in order to
// immediately destroy the value created (which was presumably created for
// its side effects), and are not used as a death grip.
if (isa<CXXThisExpr>(E) || isa<DeclRefExpr>(E) || isa<CXXNewExpr>(E)) {
return;
}
// These types are assigned into nsCOMPtr and RefPtr for their side effects,
// and not as a kungFuDeathGrip. We don't want to consider RefPtr and nsCOMPtr
// types which are initialized with these types as errors.
const TagDecl *TD = E->getType()->getAsTagDecl();
if (TD && TD->getIdentifier()) {
static const char *IgnoreTypes[] = {
"already_AddRefed",
"nsGetServiceByCID",
"nsGetServiceByCIDWithError",
"nsGetServiceByContractID",
"nsGetServiceByContractIDWithError",
"nsCreateInstanceByCID",
"nsCreateInstanceByContractID",
"nsCreateInstanceFromFactory",
};
for (uint32_t i = 0; i < sizeof(IgnoreTypes) / sizeof(IgnoreTypes[0]); ++i) {
if (TD->getName() == IgnoreTypes[i]) {
return;
}
}
}
// Report the error
const char *ErrThing;
const char *NoteThing;
if (isa<MemberExpr>(E)) {
ErrThing = "members";
NoteThing = "member";
} else {
ErrThing = "temporary values";
NoteThing = "value";
}
// We cannot provide the note if we don't have an initializer
Diag.Report(D->getLocStart(), ErrorID) << D->getType() << ErrThing;
Diag.Report(E->getLocStart(), NoteID) << NoteThing << getNameChecked(D);
}
void DiagnosticsMatcher::SprintfLiteralChecker::run(
const MatchFinder::MatchResult &Result) {
if (!Result.Context->getLangOpts().CPlusPlus) {
// SprintfLiteral is not usable in C, so there is no point in issuing these
// warnings.
return;
}
DiagnosticsEngine &Diag = Result.Context->getDiagnostics();
unsigned ErrorID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error, "Use %1 instead of %0 when writing into a character array.");
unsigned NoteID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Note, "This will prevent passing in the wrong size to %0 accidentally.");
const CallExpr *D = Result.Nodes.getNodeAs<CallExpr>("funcCall");
StringRef Name = D->getDirectCallee()->getName();
const char *Replacement;
if (Name == "snprintf") {
Replacement = "SprintfLiteral";
} else {
assert(Name == "vsnprintf");
Replacement = "VsprintfLiteral";
}
const DeclRefExpr *Buffer = Result.Nodes.getNodeAs<DeclRefExpr>("buffer");
const DeclRefExpr *Size = Result.Nodes.getNodeAs<DeclRefExpr>("size");
if (Size) {
// Match calls like snprintf(x, sizeof(x), ...).
if (Buffer->getFoundDecl() != Size->getFoundDecl()) {
return;
}
Diag.Report(D->getLocStart(), ErrorID) << Name << Replacement;
Diag.Report(D->getLocStart(), NoteID) << Name;
return;
}
const QualType QType = Buffer->getType();
const ConstantArrayType *Type = dyn_cast<ConstantArrayType>(QType.getTypePtrOrNull());
if (Type) {
// Match calls like snprintf(x, 100, ...), where x is int[100];
const IntegerLiteral *Literal = Result.Nodes.getNodeAs<IntegerLiteral>("immediate");
if (!Literal) {
// Match calls like: const int y = 100; snprintf(x, y, ...);
Literal = Result.Nodes.getNodeAs<IntegerLiteral>("constant");
}
if (Type->getSize().ule(Literal->getValue())) {
Diag.Report(D->getLocStart(), ErrorID) << Name << Replacement;
Diag.Report(D->getLocStart(), NoteID) << Name;
}
}
}
bool DiagnosticsMatcher::OverrideBaseCallChecker::isRequiredBaseMethod(
const CXXMethodDecl *Method) {
return MozChecker::hasCustomAnnotation(Method, "moz_required_base_method");
}
void DiagnosticsMatcher::OverrideBaseCallChecker::evaluateExpression(
const Stmt *StmtExpr, std::list<const CXXMethodDecl*> &MethodList) {
// Continue while we have methods in our list
if (!MethodList.size()) {
return;
}
if (auto MemberFuncCall = dyn_cast<CXXMemberCallExpr>(StmtExpr)) {
if (auto Method = dyn_cast<CXXMethodDecl>(
MemberFuncCall->getDirectCallee())) {
findBaseMethodCall(Method, MethodList);
}
}
for (auto S : StmtExpr->children()) {
if (S) {
evaluateExpression(S, MethodList);
}
}
}
void DiagnosticsMatcher::OverrideBaseCallChecker::getRequiredBaseMethod(
const CXXMethodDecl *Method,
std::list<const CXXMethodDecl*>& MethodsList) {
if (isRequiredBaseMethod(Method)) {
MethodsList.push_back(Method);
} else {
// Loop through all it's base methods.
for (auto BaseMethod = Method->begin_overridden_methods();
BaseMethod != Method->end_overridden_methods(); BaseMethod++) {
getRequiredBaseMethod(*BaseMethod, MethodsList);
}
}
}
void DiagnosticsMatcher::OverrideBaseCallChecker::findBaseMethodCall(
const CXXMethodDecl* Method,
std::list<const CXXMethodDecl*>& MethodsList) {
MethodsList.remove(Method);
// Loop also through all it's base methods;
for (auto BaseMethod = Method->begin_overridden_methods();
BaseMethod != Method->end_overridden_methods(); BaseMethod++) {
findBaseMethodCall(*BaseMethod, MethodsList);
}
}
void DiagnosticsMatcher::OverrideBaseCallChecker::run(
const MatchFinder::MatchResult &Result) {
DiagnosticsEngine &Diag = Result.Context->getDiagnostics();
unsigned OverrideBaseCallCheckID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error,
"Method %0 must be called in all overrides, but is not called in "
"this override defined for class %1");
const CXXRecordDecl *Decl = Result.Nodes.getNodeAs<CXXRecordDecl>("class");
// Loop through the methods and look for the ones that are overridden.
for (auto Method : Decl->methods()) {
// If this method doesn't override other methods or it doesn't have a body,
// continue to the next declaration.
if (!Method->size_overridden_methods() || !Method->hasBody()) {
continue;
}
// Preferred the usage of list instead of vector in order to avoid
// calling erase-remove when deleting items
std::list<const CXXMethodDecl*> MethodsList;
// For each overridden method push it to a list if it meets our
// criteria
for (auto BaseMethod = Method->begin_overridden_methods();
BaseMethod != Method->end_overridden_methods(); BaseMethod++) {
getRequiredBaseMethod(*BaseMethod, MethodsList);
}
// If no method has been found then no annotation was used
// so checking is not needed
if (!MethodsList.size()) {
continue;
}
// Loop through the body of our method and search for calls to
// base methods
evaluateExpression(Method->getBody(), MethodsList);
// If list is not empty pop up errors
for (auto BaseMethod : MethodsList) {
Diag.Report(Method->getLocation(), OverrideBaseCallCheckID)
<< BaseMethod->getQualifiedNameAsString()
<< Decl->getName();
}
}
}
void DiagnosticsMatcher::OverrideBaseCallUsageChecker::run(
const MatchFinder::MatchResult &Result) {
DiagnosticsEngine &Diag = Result.Context->getDiagnostics();
unsigned ErrorID = Diag.getDiagnosticIDs()->getCustomDiagID(
DiagnosticIDs::Error,
"MOZ_REQUIRED_BASE_METHOD can be used only on virtual methods");
const CXXMethodDecl *Method = Result.Nodes.getNodeAs<CXXMethodDecl>("method");
Diag.Report(Method->getLocation(), ErrorID);
}
void DiagnosticsMatcher::NonParamInsideFunctionDeclChecker::run(
const MatchFinder::MatchResult &Result) {
static DenseSet<const FunctionDecl*> CheckedFunctionDecls;
const FunctionDecl *func = Result.Nodes.getNodeAs<FunctionDecl>("func");
if (!func) {
const LambdaExpr *lambda = Result.Nodes.getNodeAs<